Machine Learning and AI: Support Vector Machines in Python
Год выпуска: 4/2019
Производитель: Udemy
Сайт производителя:
https://www.udemy.com/course/support-vector-machines-in-python/
Автор: Lazy Programmer Inc.
Продолжительность: 8h 47m 39s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
What you'll learn
- Apply SVMs to practical applications: image recognition, spam detection, medical diagnosis, and regression analysis
- Understand the theory behind SVMs from scratch (basic geometry)
- Use Lagrangian Duality to derive the Kernel SVM
- Understand how Quadratic Programming is applied to SVM
- Support Vector Regression
- Polynomial Kernel, Gaussian Kernel, and Sigmoid Kernel
- Build your own RBF Network and other Neural Networks based on SVM
Requirements
- Calculus, Matrix Arithmetic / Geometry, Basic Probability
- Python and Numpy coding
- Logistic Regression
Description
Support Vector Machines (
SVM) are one of the most powerful machine learning models around, and this topic has been one that students have requested ever since I started making courses.
These days, everyone seems to be talking about
deep learning, but in fact there was a time when support vector machines were seen as superior to neural networks. One of the things you’ll learn about in this course is that a support vector machine actually
is a neural network, and they essentially look identical if you were to draw a diagram.
The toughest obstacle to overcome when you’re learning about support vector machines is that they are very theoretical. This theory very easily scares a lot of people away, and it might feel like learning about support vector machines is beyond your ability. Not so!
In this course, we take a very methodical,
step-by-step approach to build up all the theory you need to understand how the SVM really works. We are going to use
Logistic Regression as our starting point, which is one of the very first things you learn about as a student of machine learning. So if you want to understand this course, just have a good intuition about Logistic Regression, and by extension have a good understanding of the geometry of lines, planes, and hyperplanes.
This course will cover the critical theory behind SVMs:
- Linear SVM derivation
- Hinge loss (and its relation to the Cross-Entropy loss)
- Quadratic programming (and Linear programming review)
- Slack variables
- Lagrangian Duality
- Kernel SVM (nonlinear SVM)
- Polynomial Kernels, Gaussian Kernels, Sigmoid Kernels, and String Kernels
- Learn how to achieve an infinite-dimensional feature expansion
- Projected Gradient Descent
- SMO (Sequential Minimal Optimization)
- RBF Networks (Radial Basis Function Neural Networks)
- Support Vector Regression (SVR)
- Multiclass Classification
For those of you who are thinking, "
theory is not for me", there’s lots of material in this course for you too!
In this course, there will be not just one, but two full sections devoted to just the practical aspects of how to make effective
use of the SVM.
We’ll do
end-to-end examples of real, practical machine learning applications, such as:
- Image recognition
- Spam detection
- Medical diagnosis
- Regression analysis
For more advanced students, there are also plenty of coding exercises where you will get to try different approaches to implementing SVMs.
These are implementations that you won't find
anywhere else in any other course.
Thanks for reading, and I’ll see you in class!
"If you can't implement it, you don't understand it"
- Or as the great physicist Richard Feynman said: "What I cannot create, I do not understand".
- My courses are the ONLY courses where you will learn how to implement machine learning algorithms from scratch
- Other courses will teach you how to plug in your data into a library, but do you really need help with 3 lines of code?
- After doing the same thing with 10 datasets, you realize you didn't learn 10 things. You learned 1 thing, and just repeated the same 3 lines of code 10 times...
Suggested Prerequisites:
- Calculus
- Matrix Arithmetic / Geometry
- Basic Probability
- Logistic Regression
- Python coding: if/else, loops, lists, dicts, sets
- Numpy coding: matrix and vector operations, loading a CSV file
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
- Check out the lecture "Machine Learning and AI Prerequisite Roadmap" (available in the FAQ of any of my courses, including the free Numpy course)
UNIQUE FEATURES
- Every line of code explained in detail - email me any time if you disagree
- No wasted time "typing" on the keyboard like other courses - let's be honest, nobody can really write code worth learning about in just 20 minutes from scratch
- Not afraid of university-level math - get important details about algorithms that other courses leave out
Who this course is for:
- Beginners who want to know how to use the SVM for practical problems
- Experts who want to know all the theory behind the SVM
- Professionals who want to know how to effectively tune the SVM for their application
Формат видео: MP4
Видео: avc, 1280x720, 16:10, 30.000 к/с, 470 кб/с
Аудио: aac lc, 44.1 кгц, 128 кб/с, 2 аудио
MediaInfo
General
Complete name : D:\1\Udemy - Machine Learning and AI Support Vector Machines in Python (4.2019)\8. Neural Networks (Beginner_s Corner 2)\4. What Happened to Infinite Dimensionality.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 12.6 MiB
Duration : 2 min 53 s
Overall bit rate : 606 kb/s
Frame rate : 30.000 FPS
Writing application : Lavf58.12.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 2 min 53 s
Bit rate : 470 kb/s
Nominal bit rate : 3 000 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:10
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.017
Stream size : 9.74 MiB (77%)
Writing library : x264 core 148
Encoding settings : cabac=1 / ref=3 / deblock=1:-1:-1 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.15 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-3 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=3000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=3000 / vbv_bufsize=6000 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC
Format/Info : Advanced Audio Codec Low Complexity
Codec ID : mp4a-40-2
Duration : 2 min 53 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 44.1 kHz
Frame rate : 43.066 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 2.65 MiB (21%)
Default : Yes
Alternate group : 1