Case Studies in Data Mining with R
Год выпуска: 2016
Производитель: Udemy
Сайт производителя: https://www.udemy.com/
Продолжительность: 20:50:36
Тип раздаваемого материала: Видеоурок
Язык: Английский
Описание: Научитесь использовать "интеллектуального анализа данных с R" (DMwR) пакетов и R программное обеспечение для создания и оценки прогнозных моделей интеллектуального анализа данных.
Case Studies in Data Mining was originally taught as three separate online data mining courses. We examine three case studies which together present a broad-based tour of the basic and extended tasks of data mining in three different domains: (1) predicting algae blooms; (2) detecting fraudulent sales transactions; and (3) predicting stock market returns. The cumulative "hands-on" 3-course fifteen sessions showcase the use of Luis Torgo's amazingly useful "Data Mining with R" (DMwR) package and R software. Everything that you see on-screen is included with the course: all of the R scripts; all of the data files and R objects used and/or referenced; as well as all of the R packages' documentation. You can be new to R software and/or to data mining and be successful in completing the course. The first case study, Predicting Algae Blooms, provides instruction regarding the many useful, unique data mining functions contained in the R software 'DMwR' package. For the algae blooms prediction case, we specifically look at the tasks of data pre-processing, exploratory data analysis, and predictive model construction. For individuals completely new to R, the first two sessions of the algae blooms case (almost 4 hours of video and materials) provide an accelerated introduction to the use of R and RStudio and to basic techniques for inputting and outputting data and text. Detecting Fraudulent Transactions is the second extended data mining case study that showcases the DMwR (Data Mining with R) package. The case is specific but may be generalized to a common business problem: How does one sift through mountains of data (401,124 records, in this case) and identify suspicious data entries, or "outliers"? The case problem is very unstructured, and walks through a wide variety of approaches and techniques in the attempt to discriminate the "normal", or "ok" transactions, from the abnormal, suspicious, or "fraudulent" transactions. This case presents a large number of alternative modeling approaches, some of which are appropriate for supervised, some for unsupervised, and some for semi-supervised data scenarios. The third extended case, Predicting Stock Market Returns is a data mining case study addressing the domain of automatic stock trading systems. These four sessions address the tasks of building an automated stock trading system based on prediction models that utilize daily stock quote data. The goal is to predict future returns for the S&P 500 market index. The resulting predictions are used together with a trading strategy to make decisions about generating market buy and sell orders. The case examines prediction problems that stem from the time ordering among data observations, that is, from the use of time series data. It also exemplifies the difficulties involved in translating model predictions into decisions and actions in the context of 'real-world' business applications.
Содержание
├── 01 A Brief Introduction to R and RStudio using Scripts
│ ├── 001 Course Overview.mp4
│ ├── 002 Introduction to R for Data Mining.mp4
│ ├── 003 Data Structures Vectors part 1.mp4
│ ├── 004 Data Structures Vectors part 2.mp4
│ ├── 005 Factors part 1.mp4
│ ├── 006 Factors part 2.mp4
│ ├── 007 Generating Sequences.mp4
│ ├── 008 Indexing aka Subscripting or Subsetting.mp4
│ ├── 009 Data Structures Matrices and Arrays part 1.mp4
│ ├── 010 Data Structures Matrices and Arrays part 2.mp4
│ ├── 011 Data Structures Lists.mp4
│ ├── 012 Data Structures Dataframes part 1.mp4
│ ├── 013 Data Structures Dataframes part 2.mp4
│ └── 014 Creating New Functions.mp4
├── 02 Inputting and Outputting Data and Text
│ ├── 001 Using the scan Function for Input part 1.mp4
│ ├── 002 Using the scan Function for Input part 2.mp4
│ ├── 003 Using readline, cat and print Functions.mp4
│ ├── 004 Using readLines Function and Text Data.mp4
│ ├── 005 Example Program powers.R.mp4
│ ├── 006 Example Program quad2b.R.mp4
│ ├── 007 Reading and Writing Files part 1.mp4
│ └── 008 Reading and Writing Files part 2.mp4
├── 03 Introduction to Predicting Algae Blooms
│ ├── 001 Predicting Algae Blooms.mp4
│ ├── 002 Visualizing other Imputations with Lattice Plots.mp4
│ ├── 003 Data Visualization and Summarization Histograms.mp4
│ ├── 004 Data Visualization Boxplot and Identity Plot.mp4
│ ├── 005 Data Visualization Conditioning Plots.mp4
│ ├── 006 Imputation Dealing with Unknown or Missing Values.mp4
│ ├── 007 Imputation Removing Rows with Missing Values.mp4
│ ├── 008 Imputation Replace Missing Values with Central Measures.mp4
│ └── 009 Imputation Replace Missing Values through Correlation.mp4
├── 04 Obtaining Prediction Models
│ ├── 001 Read in Data Files.mp4
│ ├── 002 Creating Prediction Models.mp4
│ ├── 003 Examine Alternative Regression Models.mp4
│ ├── 004 Regression Trees.mp4
│ └── 005 Strategy for Pruning Trees.mp4
├── 05 Evaluating and Selecting Models
│ ├── 001 Alternative Model Evaluation Criteria.mp4
│ ├── 002 Introduction to K-Fold Cross-Validation.mp4
│ ├── 003 Setting up K-Fold Evaluation part 1.mp4
│ ├── 004 Setting up K-Fold Evaluation part 2.mp4
│ ├── 005 Best Model part 1.mp4
│ ├── 006 Best Model part 2.mp4
│ ├── 007 Finish Evaluating Models.mp4
│ ├── 008 Predicting from the Models.mp4
│ └── 009 Comparing the Predictions.mp4
├── 06 Examine the Data in the Fraudulent Transactions Case Study
│ ├── 001 Exercise Solution from Evaluating and Selecting Models.mp4
│ ├── 002 Fraudulent Case Study Introduction.mp4
│ ├── 003 Prelude to Exploring the Data.mp4
│ ├── 004 Exploring the Data with Eye toward Missingness.mp4
│ └── 005 Continue Exploring the Data.mp4
├── 07 Pre-Processing the Data to Apply Methodology
│ ├── 001 Review the Data and the Focus of the Fraudulent Transactions Case.mp4
│ ├── 002 Pre-Processing the Data part 1.mp4
│ ├── 003 Pre-Processing the Data part 2.mp4
│ ├── 004 Pre-Processing the Data part 3.mp4
│ ├── 005 Defining Data Mining Tasks.mp4
│ ├── 006 Semi-Supervised Techniques.mp4
│ ├── 007 Precision and Recall.mp4
│ └── 008 Lift Charts and Precision Recall Curves.mp4
├── 08 Methodology to Find Outliers Fraudulent Transactions
│ ├── 001 Exercise from Previous Session.mp4
│ ├── 002 Review Precision and Recall.mp4
│ ├── 003 Review Lift Charts and Precision Recall Curves.mp4
│ ├── 004 Cumulative Recall Chart.mp4
│ ├── 005 Creating More Functions for the Experimental Methodology.mp4
│ ├── 006 Experimental Methodology to find Outliers part 1.mp4
│ ├── 007 Experimental Methodology to find Outliers part 2.mp4
│ ├── 008 Experimental Methodology to find Outliers part 3.mp4
│ ├── 009 Experimental Methodology to find Outliers part 4.mp4
│ └── 010 Experimental Methodology to find Outliers part 5.mp4
├── 09 The Data Mining Tasks to Find the Fraudulent Transactions
│ ├── 001 Review of Fraud Case part 1.mp4
│ ├── 002 Review of Fraud Case part 2.mp4
│ ├── 003 Review of Fraud Case part 3.mp4
│ ├── 004 Baseline Boxplot Rule.mp4
│ ├── 005 Local Outlier Factors.mp4
│ ├── 006 Plotting Everything.mp4
│ ├── 007 Supervised and Unsupervised Approaches.mp4
│ ├── 008 SMOTE and Naive Bayes part 1.mp4
│ └── 009 SMOTE and Naive Bayes part 2.mp4
├── 10 Sidebar on Boosting
│ ├── 001 Introduction to Boosting from Rattle course.mp4
│ ├── 002 Boosting Demo Basics using R.mp4
│ ├── 003 Replicating Adaboost using Rpart Recursive Partitioning Package.mp4
│ ├── 004 Replicating Adaboost using Rpart part 2.mp4
│ ├── 005 Boosting Extensions and Variants.mp4
│ └── 006 Boosting Exercise.mp4
├── 11 Introduction to Stock Market Prediction Case Study
│ ├── 001 Introduction to Stock Market Case Study and Materials.mp4
│ ├── 002 Case Study Background and Data part 1.mp4
│ ├── 003 Case Study Background and Data part 2.mp4
│ ├── 004 Accessing the Data part 1.mp4
│ ├── 005 Accessing the Data part 2.mp4
│ ├── 006 Defining the Prediction Tasks part 1.mp4
│ ├── 007 Defining the Prediction Tasks part 2.mp4
│ ├── 008 Defining the Prediction Tasks part 3.mp4
│ ├── 009 Defining the Prediction Tasks part 4.mp4
│ └── 010 Defining the Prediction Tasks part 5.mp4
├── 12 Prediction Tasks and Models
│ ├── 001 Prelude to Modeling Stock Market Indices.mp4
│ ├── 002 Decision Trees as Applicable to Case Study Tasks.mp4
│ ├── 003 Decision Trees part 2.mp4
│ ├── 004 Decision Trees part 3.mp4
│ ├── 005 Decision Trees part 4.mp4
│ ├── 006 Random Forests Review.mp4
│ ├── 007 Create Initial Model part 1.mp4
│ ├── 008 Create Initial Model part 2.mp4
│ ├── 009 The Prediction Tasks.mp4
│ ├── 010 Precision and Recall and Confusion Matrices.mp4
│ ├── 011 Neural Network Prediction Technique part 1.mp4
│ └── 012 Neural Network Prediction Technique part 2.mp4
├── 13 Prediction Models and Support Vector Machines SVMs
│ ├── 001 Review Support Vector Machines SVMs using Weather Data part 1.mp4
│ ├── 002 Review Support Vector Machines SVMs using Weather Data part 2.mp4
│ ├── 003 Review Support Vector Machines SVMs using Weather Data part 3.mp4
│ ├── 004 SVMs Applied to Stock Market Case.mp4
│ ├── 005 Kernel Functions.mp4
│ ├── 006 Multivariate Adaptive Regressive Splines.mp4
│ ├── 007 How Will the Predictions be Used .mp4
│ ├── 008 Two Strategies.mp4
│ ├── 009 Writing a Simulated Trader Function part 1.mp4
│ ├── 010 Writing a Simulated Trader Function part 2.mp4
│ └── 011 Evaluating our Simulated Trades.mp4
├── 14 Model Evaluation and Selection
│ ├── 001 Quick Review of Case Study Support Vector Machines SVMs.mp4
│ ├── 002 Begin Evaluating Models.mp4
│ ├── 003 Evaluating Policy One and Policy Two.mp4
│ ├── 004 Why You Cannot Randomly Resample Records.mp4
│ ├── 005 So What Approach is Recommended .mp4
│ ├── 006 Experimental Model Comparisons part 1.mp4
│ ├── 007 Experimental Model Comparisons part 2.mp4
│ ├── 008 Set Up Ranksystems.mp4
│ ├── 009 Continue Evaluating part 1.mp4
│ ├── 010 Continue Evaluating part 2.mp4
│ └── 011 Continue Evaluating part 3.mp4
└── 15 Wrap Up Stock Market Case Study
├── 001 Prologue to Last Session Wrap-Up.mp4
├── 002 Last Session Wrap-Up part 1.mp4
└── 003 Last Session Wrap-Up part 2.mp4
Файлы примеров: отсутствуют
Формат видео: MP4
Видео : AVC, 1280x720 (16:9), 30.000 fps, ~912 Kbps avg, 0.033 bit/pixel
Аудио: 44.1 KHz, AAC LC, 2 ch, ~61.2 Kbps