Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах (3-е изд.) [2009, DjVu, RUS]

Страницы:  1
Ответить
 

intellect

Стаж: 20 лет 2 месяца

Сообщений: 60270


intellect · 23-Мар-13 00:35 (11 лет 9 месяцев назад, ред. 07-Авг-13 16:58)

Вычислительная математика в примерах и задачах
Год: 2009
Автор: Копченова Н.В., Марон И.А.
Издательство: Лань
ISBN: 978-5-8114-0801-6
Язык: Русский
Формат: DjVu
Качество: Отсканированные страницы + слой распознанного текста
Интерактивное оглавление: Да
Количество страниц: 368
Описание: Учебное пособие представляет собой руководство к решению задач по вычислительной математике.
В книге содержатся сведения о правилах приближенных вычислений, вычислении значений функций, приближенном решении систем линейных и нелинейных уравнений, интерполировании, приближенном дифференцировании и интегрировании, приближенном решении дифференциальных уравнений (обыкновенных и с частными производными), приближенном решении интегральных уравнений.
Все параграфы содержат краткие теоретические сведения, подробное решение типовых примеров и задачи для самостоятельного решения. Для большинства таких задач приведены ответы.
Учебное пособие предназначено для студентов технических и экономических университетов и вузов. Может быть полезна также научным работникам в области технических и экономических наук.
Примеры страниц
Оглавление
Предисловие
ГЛАВА I. ПРАВИЛА ПРИБЛИЖЕННЫХ ВЫЧИСЛЕНИЙ И ОЦЕНКА ПОГРЕШНОСТЕЙ ПРИ ВЫЧИСЛЕНИЯХ
§ 1. Приближенные числа, их абсолютные и относительные погрешности
§ 2. Сложение и вычитание приближенных чисел
§ 3. Умножение и деление приближенных чисел
§ 4. Погрешности вычисления значений функции
§ 5. Определение допустимой погрешности аргументов по допустимой погрешности функции
ГЛАВА II. ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИИ
§ 1. Вычисление значений многочлена. Схема Горнера
§ 2. Вычисление значений некоторых трансцендентных функций с помощью степенных рядов
§ 3. Некоторые многочленные приближения
§ 4. Применение цепных дробей для вычисления значений трансцендентных функций
§ 5. Применение метода итераций для приближенного вычисления значений функций
ГЛАВА III. ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
§ 1. Основные понятия
§ 2. Метод Гаусса
§ 3. Компактная схема Гаусса. Модификация Краута-Дулитла
§ 4. Схема Гаусса с выбором главного элемента
§ 5. Схема Халецкого
§ 6. Метод квадратных корней
§ 7. Вычисление определителей
§ 8. Вычисление элементов обратной матрицы методом Гаусса
§ 9. Метод простой итерации
§ 10. Метод Зейделя
§ 11. Применение метода итерации для уточнения элементов обратной матрицы
ГЛАВА IV. ЧИСЛЕННОЕ РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
§ 1. Метод Ньютона для системы двух уравнений
§ 2. Метод простой итерации для системы двух уравнений
§ 3. Распространение метода Ньютона на системы n уравнений с n неизвестными
§ 4. Распространение метода итераций на системы n уравнений с n неизвестными
ГЛАВА V. ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ
§ 1. Постановка задачи интерполирования
§ 2. Интерполирование для случая равноотстоящих узлов. Первая и вторая интерполяционные формулы Ньютона
§ 3. Интерполяционные формулы Гаусса, Стирлинга, Бесселя
§ 4. Интерполяционная формула Лагранжа. Схема Эйткена
§ 5. Обратное интерполирование
§ 6. Нахождение корней уравнения методом обратного интерполирования
ГЛАВА VI. ЧИСЛЕННОЕ ДИФФЕРЕНЦИРОВАНИЕ
§ 1. Формулы численного дифференцирования
§ 2. Погрешности, возникающие при численном дифференцировании
§ 3. Выбор оптимального шага численного дифференцирования
ГЛАВА VII. ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ
§ 1. Квадратурные формулы с равноотстоящими узлами
§ 2. Выбор шага интегрирования
§ 3. Квадратурные формулы Гаусса
§ 4. Интегрирование с помощью степенных рядов
§ 5. Интегралы от разрывных функций. Метод Канторовича выделения особенностей
§ 6. Интегралы с бесконечными пределами
§ 7. Кратные интегралы. Метод повторного интегрирования, метод Люстерника и Диткина, метод Монте-Карло
ГЛАВА VIII. ПРИБЛИЖЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Задача Коши. Общие замечания
§ 2. Интегрирование дифференциальных уравнений с помощью рядов
§ 3. Метод последовательных приближений
§ 4. Метод Эйлера
§ 5. Модификации метода Эйлера
§ 6. Метод Эйлера с последующей итерационной обработкой
§ 7. Метод Рунге-Кутта
§ 8. Метод Адамса
§ 9. Метод Милна
§ 10. Метод Крылова отыскания «начального отрезка»
ГЛАВА IX. КРАЕВЫЕ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
§ 1. Постановка задачи
§ 2. Метод конечных разностей для линейных дифференциальных уравнений второго порядка
§ 3. Метод прогонки
§ 4. Метод конечных разностей для нелинейных дифференциальных уравнений второго порядка
§ 5. Метод Галеркина
§ 6. Метод коллокации
ГЛАВА X. ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ И ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ
§ 1. Метод сеток
§ 2. Метод сеток для задачи Дирихле
§ 3. Итерационный метод решения системы конечно-разностных уравнений
§ 4. Решение краевых задач для криволинейных областей
§ 5. Метод сеток для уравнения параболического типа
§ 6. Метод прогонки для уравнения теплопроводности
§ 7. Метод сеток для уравнения гиперболического типа
§ 8. Решение уравнений Фредгольма методом конечных сумм
§ 9. Решение уравнения Вольтерра второго рода методом конечных сумм
§ 10. Метод замены ядра на вырожденное
Приложения
Ответы
Литература
Распределение литературы по главам
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error