Computational Cell Biology / Вычислительная клеточная биология
Год: 2000
Автор: Fall C.P. / Фолл К.П.
Жанр: Клеточная биологи
Издательство: Springer
ISBN: 0-387-95369-8
Серия: Interdisciplinary Applied Mathematics
Язык: Английский
Формат: PDF
Качество: Изначально компьютерное (eBook)
Количество страниц: 489
Описание: В книге изложены основы динамического моделирования в клеточной биологии.
This text is an introduction to dynamical modeling in cell biology. It is not meant as a complete overview of modeling or of particular models in cell biology. Rather, we use selected biological examples to motivate the concepts and techniques used in computational cell biology. This is done through a progression of increasingly more complex cellular functions modeled with increasingly complex mathematical and computational techniques. There are other excellent sources for material on mathematical cell biology, and so the focus here truly is computer modeling. This does not mean that there are no mathematical techniques introduced, because some of them are absolutely
vital, but it does mean that much of the mathematics is explained in a more intuitive fashion, while we allow the computer to do most of the work.
Оглавление
Preface vii
I Introductory Course 1
1 Dynamic Phenomena in Cells 3
1.1 Scope of Cellular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Computational Modeling in Biology . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Cartoons, Mechanisms, and Models . . . . . . . . . . . . . . . . 8
1.2.2 The Role of Computation . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 The Role of Mathematics . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 A Simple Molecular Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Solving and Analyzing Differential Equations . . . . . . . . . . . . . . . 13
1.4.1 Numerical Integration of Differential Equations . . . . . . . . . 15
1.4.2 Introduction to Numerical Packages . . . . . . . . . . . . . . . . 18
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Voltage Gated Ionic Currents 21
2.1 Basis of the Ionic Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1 The Nernst Potential: Charge Balances Concentration . . . . . 24
2.1.2 The Resting Membrane Potential . . . . . . . . . . . . . . . . . . 26
2.2 The Membrane Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Equations for Membrane Electrical Behavior . . . . . . . . . . . 28
2.3 Activation and Inactivation Gates . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Models of Voltage–Dependent Gating . . . . . . . . . . . . . . . . 29
xiv Contents
2.3.2 TheVoltageClamp . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Interacting Ion Channels: The Morris–Lecar Model . . . . . . . . . . . 34
2.4.1 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Why Do Oscillations Occur? . . . . . . . . . . . . . . . . . . . . . 40
2.4.4 Excitability and Action Potentials . . . . . . . . . . . . . . . . . . 43
2.4.5 Type I andType II Spiking . . . . . . . . . . . . . . . . . . . . . . 44
2.5 The Hodgkin–Huxley Model . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.6 FitzHugh–Nagumo Class Models . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3 Transporters and Pumps 53
3.1 Passive Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Transporter Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Algebraic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Diagrammatic Method . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 Rate of the GLUT Transporter . . . . . . . . . . . . . . . . . . . . 62
3.3 The Na+/Glucose Cotransporter . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 SERCA Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Transport Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 Fast and Slow Time Scales 77
4.1 The Rapid Equilibrium Approximation . . . . . . . . . . . . . . . . . . . 78
4.2 Asymptotic Analysis of Time Scales . . . . . . . . . . . . . . . . . . . . . 82
4.3 Glucose–Dependent Insulin Secretion . . . . . . . . . . . . . . . . . . . 83
4.4 Ligand Gated Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 The Neuromuscular Junction . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 The Inositol Trisphosphate (IP3) receptor . . . . . . . . . . . . . . . . . 91
4.7 Michaelis–Menten Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5 Whole–Cell Models 101
5.1 Models of ER and PM Calcium Handling . . . . . . . . . . . . . . . . . 102
5.1.1 Flux Balance Equations with Rapid Buffering . . . . . . . . . . 103
5.1.2 Expressions for the Fluxes . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Calcium Oscillations in the Bullfrog Sympathetic Ganglion Neuron . 107
5.2.1 Ryanodine Receptor Kinetics: The Keizer–Levine Model . . . . 108
5.2.2 Bullfrog Sympathetic Ganglion Neuron Closed–Cell Model . . 111
5.2.3 Bullfrog Sympathetic Ganglion Neuron Open–Cell Model . . . 113
5.3 The Pituitary Gonadotroph . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.1 The ER Oscillator in a Closed Cell . . . . . . . . . . . . . . . . . . 116
Contents xix
A.2 A Brief Review of Power Series . . . . . . . . . . . . . . . . . . . . . . . . 380
A.3 Linear ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
A.3.1 Solution of Systems of Linear ODEs . . . . . . . . . . . . . . . . 383
A.3.2 Numerical Solutions of ODEs . . . . . . . . . . . . . . . . . . . . 385
A.3.3 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . 386
A.4 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
A.4.1 Stability of Linear Steady States . . . . . . . . . . . . . . . . . . . 390
A.4.2 Stability of a Nonlinear Steady States . . . . . . . . . . . . . . . 392
A.5 Bifurcation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
A.5.1 Bifurcation at a Zero Eigenvalue . . . . . . . . . . . . . . . . . . 396
A.5.2 Bifurcation at a Pair of Imaginary Eigenvalues . . . . . . . . . . 398
A.6 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
A.6.1 Regular Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 401
A.6.2 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
A.6.3 Singular Perturbation Theory . . . . . . . . . . . . . . . . . . . . 405
A.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
B Solving and Analyzing Dynamical Systems Using XPPAUT 410
B.1 Basics of Solving Ordinary Differential Equations . . . . . . . . . . . . 411
B.1.1 Creating the ODE File . . . . . . . . . . . . . . . . . . . . . . . . . 411
B.1.2 Running the Program . . . . . . . . . . . . . . . . . . . . . . . . . 412
B.1.3 The Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
B.1.4 Solving the Equations, Graphing, and Plotting. . . . . . . . . . . 414
B.1.5 Saving and Printing Plots . . . . . . . . . . . . . . . . . . . . . . . 416
B.1.6 Changing Parameters and Initial Data . . . . . . . . . . . . . . . 418
B.1.7 Looking at the Numbers: The Data Viewer . . . . . . . . . . . . 419
B.1.8 Saving and Restoring the State of Simulations . . . . . . . . . . 420
B.1.9 Important Numerical Parameters . . . . . . . . . . . . . . . . . . 421
B.1.10 Command Summary: The Basics . . . . . . . . . . . . . . . . . . 422
B.2 Phase Planes and Nonlinear Equations . . . . . . . . . . . . . . . . . . . 422
B.2.1 Direction Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
B.2.2 Nullclines and Fixed Points . . . . . . . . . . . . . . . . . . . . . . 423
B.2.3 Command Summary: Phase Planes and Fixed Points . . . . . . 426
B.3 Bifurcation and Continuation . . . . . . . . . . . . . . . . . . . . . . . . 427
B.3.1 General Steps for Bifurcation Analysis . . . . . . . . . . . . . . . 427
B.3.2 Hopf Bifurcation in the FitzHugh–Nagumo Equations . . . . . 428
B.3.3 Hints for Computing Complete Bifurcation Diagrams . . . . . . 430
B.4 Partial Differential Equations: The Method of Lines . . . . . . . . . . . 432
B.5 Stochastic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
B.5.1 A Simple Brownian Ratchet . . . . . . . . . . . . . . . . . . . . . 434
B.5.2 A Sodium Channel Model . . . . . . . . . . . . . . . . . . . . . . . 434
B.5.3 A Flashing Ratchet . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Contents xv
5.3.2 Open–Cell Model with Constant Calcium Influx . . . . . . . . . 122
5.3.3 The Plasma Membrane Oscillator . . . . . . . . . . . . . . . . . . 124
5.3.4 Bursting Driven by the ER in the Full Model . . . . . . . . . . . 126
5.4 The Pancreatic Beta Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.1 Chay–Keizer Model . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.2 Chay–Keizer with an ER . . . . . . . . . . . . . . . . . . . . . . . 133
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6 Intercellular Communication 140
6.1 Electrical Coupling and Gap Junctions . . . . . . . . . . . . . . . . . . . 141
6.1.1 Synchronization of Two Oscillators . . . . . . . . . . . . . . . . . 142
6.1.2 Asynchrony Between Oscillators . . . . . . . . . . . . . . . . . . . 143
6.1.3 Cell Ensembles, Electrical Coupling Length Scale . . . . . . . . 144
6.2 Synaptic Transmission Between Neurons . . . . . . . . . . . . . . . . . 146
6.2.1 Kinetics of Postsynaptic Current . . . . . . . . . . . . . . . . . . 147
6.2.2 Synapses: Excitatory and Inhibitory; Fast and Slow . . . . . . . 148
6.3 When Synapses Might (or Might Not) Synchronize Active Cells . . . . 150
6.4 Neural Circuits as Computational Devices . . . . . . . . . . . . . . . . . 153
6.5 Large–Scale Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
II Advanced Material 169
7 Spatial Modeling 171
7.1 One-Dimensional Formulation . . . . . . . . . . . . . . . . . . . . . . . . 173
7.1.1 Conservation in One Dimension . . . . . . . . . . . . . . . . . . . 173
7.1.2 Fick’sLawofDiffusion . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.3 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.1.4 Flux of Ions in a Field . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1.5 The Cable Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1.6 Boundary and Initial Conditions . . . . . . . . . . . . . . . . . . 178
7.2 Important Examples with Analytic Solutions . . . . . . . . . . . . . . . 179
7.2.1 Diffusion Through a Membrane . . . . . . . . . . . . . . . . . . . 179
7.2.2 Ion Flux Through a Channel . . . . . . . . . . . . . . . . . . . . . 180
7.2.3 Voltage Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.2.4 Diffusion in a Long Dendrite . . . . . . . . . . . . . . . . . . . . . 181
7.2.5 Diffusion into aCapillary . . . . . . . . . . . . . . . . . . . . . . . 183
7.3 Numerical Solution of the Diffusion Equation . . . . . . . . . . . . . . 184
7.4 Multidimensional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.4.1 Conservation Law in Multiple Dimensions . . . . . . . . . . . . 186
7.4.2 Fick’s Law in Multiple Dimensions . . . . . . . . . . . . . . . . . 187
7.4.3 Advection in Multiple Dimensions . . . . . . . . . . . . . . . . . 188
xvi Contents
7.4.4 Boundary and Initial Conditions for Multiple Dimensions . . . 188
7.4.5 Diffusion in Multiple Dimensions: Symmetry . . . . . . . . . . . 188
7.5 Traveling Waves in Nonlinear Reaction–Diffusion Equations . . . . . . 189
7.5.1 Traveling Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . 190
7.5.2 Traveling Wave in the Fitzhugh–Nagumo Equations . . . . . . . 192
7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8 Modeling Intracellular Calcium Waves and Sparks 198
8.1 Microfluorometric Measurements . . . . . . . . . . . . . . . . . . . . . . 198
8.2 A Model of the Fertilization Calcium Wave . . . . . . . . . . . . . . . . 200
8.3 Including Calcium Buffers in Spatial Models . . . . . . . . . . . . . . . 202
8.4 The Effective Diffusion Coefficient . . . . . . . . . . . . . . . . . . . . . . 203
8.5 Simulation of a Fertilization Calcium Wave . . . . . . . . . . . . . . . . 204
8.6 Simulation of a Traveling Front . . . . . . . . . . . . . . . . . . . . . . . 204
8.7 Calcium Waves in the Immature Xenopus Oocycte . . . . . . . . . . . . 208
8.8 Simulation of a Traveling Pulse . . . . . . . . . . . . . . . . . . . . . . . 208
8.9 Simulation of a Kinematic Wave . . . . . . . . . . . . . . . . . . . . . . . 210
8.10 Spark-Mediated Calcium Waves . . . . . . . . . . . . . . . . . . . . . . . 213
8.11 The Fire–Diffuse–Fire Model . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.12 Modeling Localized Calcium Elevations . . . . . . . . . . . . . . . . . . 220
8.13 Steady-State Localized Calcium Elevations . . . . . . . . . . . . . . . . 222
8.13.1 The Steady–State Excess Buffer Approximation (EBA) . . . . . 224
8.13.2 The Steady–State Rapid Buffer Approximation (RBA) . . . . . . 225
8.13.3 Complementarity of the Steady-State EBA and RBA . . . . . . . 226
8.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
9 Biochemical Oscillations 230
9.1 Biochemical Kinetics and Feedback . . . . . . . . . . . . . . . . . . . . . 232
9.2 Regulatory Enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9.3 Two-Component Oscillators Based on Autocatalysis . . . . . . . . . . . 239
9.3.1 Substrate–Depletion Oscillator . . . . . . . . . . . . . . . . . . . . 240
9.3.2 Activator–Inhibitor Oscillator . . . . . . . . . . . . . . . . . . . . 242
9.4 Three-Component Networks Without Autocatalysis . . . . . . . . . . . 243
9.4.1 Positive Feedback Loop and the Routh–Hurwitz Theorem . . . 244
9.4.2 Negative Feedback Oscillations . . . . . . . . . . . . . . . . . . . 244
9.4.3 The Goodwin Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 244
9.5 Time-Delayed Negative Feedback . . . . . . . . . . . . . . . . . . . . . . 247
9.5.1 Distributed Time Lag and the Linear Chain Trick . . . . . . . . 248
9.5.2 Discrete Time Lag . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
9.6 Circadian Rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Contents xvii
10 Cell Cycle Controls 261
10.1 Physiology of the Cell Cycle in Eukaryotes . . . . . . . . . . . . . . . . . 261
10.2 Molecular Mechanisms of Cell Cycle Control . . . . . . . . . . . . . . . 263
10.3 A Toy Model of Start and Finish . . . . . . . . . . . . . . . . . . . . . . . 265
10.3.1 Hysteresis in the Interactions Between Cdk and APC . . . . . . 266
10.3.2 Activation of the APC at Anaphase . . . . . . . . . . . . . . . . . 267
10.4 A Serious Model of the Budding Yeast Cell Cycle . . . . . . . . . . . . . 269
10.5 Cell Cycle Controls in Fission Yeast . . . . . . . . . . . . . . . . . . . . . 273
10.6 Checkpoints and Surveillance Mechanisms . . . . . . . . . . . . . . . . 276
10.7 Division Controls in Egg Cells . . . . . . . . . . . . . . . . . . . . . . . . 276
10.8 Growth and Division Controls in Metazoans . . . . . . . . . . . . . . . . 278
10.9 Spontaneous Limit Cycle or Hysteresis Loop? . . . . . . . . . . . . . . . 279
10.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11 Modeling the Stochastic Gating of Ion Channels 285
11.1 Single–Channel Gating and a Two-State Model . . . . . . . . . . . . . . 285
11.1.1 Modeling Channel Gating as a Markov Process . . . . . . . . . . 286
11.1.2 The Transition Probability Matrix . . . . . . . . . . . . . . . . . . 288
11.1.3 Dwell Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.1.4 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . 290
11.1.5 Simulating Multiple Independent Channels . . . . . . . . . . . . 291
11.1.6 Gillespie’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
11.2 An Ensemble of Two-State Ion Channels . . . . . . . . . . . . . . . . . . 293
11.2.1 Probability of Finding N Channels in the Open State . . . . . . 293
11.2.2 The Average Number of Open Channels . . . . . . . . . . . . . . 296
11.2.3 The Variance of the Number of Open Channels . . . . . . . . . . 297
11.3 Fluctuations in Macroscopic Currents . . . . . . . . . . . . . . . . . . . 298
11.4 Modeling Fluctuations in Macroscopic Currents with Stochastic
ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
11.4.1 Langevin Equation for an Ensemble of Two-State Channels . . 304
11.4.2 Fokker–Planck Equation for an Ensemble of Two-State
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
11.5 Membrane Voltage Fluctuations . . . . . . . . . . . . . . . . . . . . . . . 307
11.5.1 Membrane Voltage Fluctuations with an Ensemble of
Two-State Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 309
11.6 Stochasticity and Discreteness in an Excitable Membrane Model . . . 311
11.6.1 Phenomena Induced by Stochasticity and Discreteness . . . . . 312
11.6.2 The Ensemble Density Approach Applied to the Stochastic
Morris–Lecar Model . . . . . . . . . . . . . . . . . . . . . . . . . . 313
11.6.3 Langevin Formulation for the Stochastic Morris–Lecar Model . 314
11.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
xviii Contents
12 Molecular Motors: Theory 320
12.1 Molecular Motions as Stochastic Processes . . . . . . . . . . . . . . . . 323
12.1.1 Protein Motion as a Simple Random Walk . . . . . . . . . . . . 323
12.1.2 Polymer Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.1.3 Sample Paths of Polymer Growth . . . . . . . . . . . . . . . . . . 327
12.1.4 The Statistical Behavior of Polymer Growth . . . . . . . . . . . 329
12.2 Modeling Molecular Motions . . . . . . . . . . . . . . . . . . . . . . . . . 330
12.2.1 The Langevin Equation . . . . . . . . . . . . . . . . . . . . . . . . 330
12.2.2 Numerical Simulation of the Langevin Equation . . . . . . . . . 332
12.2.3 The Smoluchowski Model . . . . . . . . . . . . . . . . . . . . . . 333
12.2.4 First Passage Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
12.3 Modeling Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . 335
12.4 A Mechanochemical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 338
12.5 Numerical Simulation of Protein Motion . . . . . . . . . . . . . . . . . . 339
12.5.1 Numerical Algorithm that Preserves Detailed Balance . . . . . 340
12.5.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 341
12.5.3 Numerical Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 342
12.5.4 Implicit Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 344
12.6 Derivations and Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 345
12.6.1 The Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 345
12.6.2 The Equipartition Theorem . . . . . . . . . . . . . . . . . . . . . 345
12.6.3 A Numerical Method for the Langevin Equation . . . . . . . . . 346
12.6.4 Some Connections with Thermodynamics . . . . . . . . . . . . . 347
12.6.5 Jumping Beans and Entropy . . . . . . . . . . . . . . . . . . . . . 349
12.6.6 Jump Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
12.6.7 Jump Rates at an Absorbing Boundary . . . . . . . . . . . . . . . 351
12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
13 Molecular Motors: Examples 354
13.1 Switching in the Bacterial Flagellar Motor . . . . . . . . . . . . . . . . . 354
13.2 A Motor Driven by a “Flashing Potential” . . . . . . . . . . . . . . . . . 359
13.3 The Polymerization Ratchet . . . . . . . . . . . . . . . . . . . . . . . . . 362
13.4 Simplified Model of the F0Motor . . . . . . . . . . . . . . . . . . . . . . 364
13.4.1 The Average Velocity of the Motor in the Limit of Fast
Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
13.4.2 Brownian Ratchet vs. Power Stroke . . . . . . . . . . . . . . . . . 369
13.4.3 The Average Velocity of the Motor When Chemical Reactions
Are as Fast as Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 369
13.5 Other Motor Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
13.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
A Qualitative Analysis of Differential Equations 378
A.1 Matrix and Vector Manipulation . . . . . . . . . . . . . . . . . . . . . . . 379
xx Contents
C Numerical Algorithms 439
References 451
Index 463
Доп. информация:
Опубликовано группой