[Udemy, Sudhanshu Gusain] LLMOps And AIOps Bootcamp With 9+ End To End Projects [7/2025, ENG]

Страницы:  1
Ответить
 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2062

LearnJavaScript Beggom · 20-Июл-25 18:00 (4 месяца 5 дней назад)

LLMOps And AIOps Bootcamp With 9+ End To End Projects
Год выпуска: 7/2025
Производитель: Udemy
Сайт производителя: https://www.udemy.com/course/llmops-and-aiops-bootcamp-with-9-end-to-end-projects/
Автор: Sudhanshu Gusain
Продолжительность: 29h 16m 11s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
What you'll learn
  1. Build and deploy real-world AI apps using Langchain, FAISS, ChromaDB, and other cutting-edge tools.
  2. Set up CI/CD pipelines using Jenkins, GitHub Actions, CircleCI, GitLab, and ArgoCD.
  3. Use Docker, Kubernetes, AWS, and GCP to deploy and scale AI applications.
  4. Monitor and secure AI systems using Trivy, Prometheus, Grafana, and the ELK Stack
Requirements
  1. Modular Python Programming Knowledge
  2. Basic Generative AI like Langchain,Vector Databases,etc
Description
Are you ready to take your Generative AI and LLM (Large Language Model) skills to a production-ready level? This comprehensive hands-on course on LLMOps is designed for developers, data scientists, MLOps engineers, and AI enthusiasts who want to build, manage, and deploy scalable LLM applications using cutting-edge tools and modern cloud-native technologies.
In this course, you will learn how to bridge the gap between building powerful LLM applications and deploying them in real-world production environments using GitHub, Jenkins, Docker, Kubernetes, FastAPI, Cloud Services (AWS & GCP), and CI/CD pipelines.
We will walk through multiple end-to-end projects that demonstrate how to operationalize HuggingFace Transformers, fine-tuned models, and Groq API deployments with performance monitoring using Prometheus, Grafana, and SonarQube. You'll also learn how to manage infrastructure and orchestration using Kubernetes (Minikube, GKE), AWS Fargate, and Google Artifact Registry (GAR).
What You Will Learn:
Introduction to LLMOps & Production Challenges
Understand the challenges of deploying LLMs and how MLOps principles extend to LLMOps. Learn best practices for scaling and maintaining these models efficiently.
Version Control & Source Management
Set up and manage code repositories with Git & GitHub, integrate pull requests, branching strategies, and project workflows.
CI/CD Pipeline with Jenkins & GitHub Actions
Automate training, testing, and deployment pipelines using Jenkins, GitHub Actions, and custom AWS runners to streamline model delivery.
FastAPI for LLM Deployment
Package and expose LLM services using FastAPI, and deploy inference endpoints with proper error handling, security, and logging.
Groq & HuggingFace Integration
Integrate Groq API for blazing-fast LLM inference. Use HuggingFace models, fine-tuning, and hosting options to deploy custom language models.
Containerization & Quality Checks
Learn how to containerize your LLM applications using Docker. Ensure code quality and maintainability using SonarQube and other static analysis tools.
Cloud-Native Deployments (AWS & GCP)
Deploy applications using AWS Fargate, GCP GKE, and integrate with GAR (Google Artifact Registry). Learn how to manage secrets, storage, and scalability.
Vector Databases & Semantic Search
Work with vector databases like FAISS, Weaviate, or Pinecone to implement semantic search and Retrieval-Augmented Generation (RAG) pipelines.
Monitoring and Observability
Monitor your LLM systems using Prometheus and Grafana, and ensure system health with logging, alerting, and dashboards.
Kubernetes & Minikube
Orchestrate containers and scale LLM workloads using Kubernetes, both locally with Minikube and on the cloud using GKE (Google Kubernetes Engine).
Who Should Enroll?
  1. MLOps and DevOps Engineers looking to break into LLM deployment
  2. Data Scientists and ML Engineers wanting to productize their LLM solutions
  3. Backend Developers aiming to master scalable AI deployments
  4. Anyone interested in the intersection of LLMs, MLOps, DevOps, and Cloud
Technologies Covered:
Git, GitHub, Jenkins, Docker, FastAPI, Groq, HuggingFace, SonarQube, AWS Fargate, AWS Runner, GCP, Google Kubernetes Engine (GKE), Google Artifact Registry (GAR), Minikube, Vector Databases, Prometheus, Grafana, Kubernetes, and more.
By the end of this course, you’ll have hands-on experience deploying, monitoring, and scaling LLM applications with production-grade infrastructure, giving you a competitive edge in building real-world AI systems.
Get ready to level up your LLMOps journey! Enroll now and build the future of Generative AI.
Who this course is for:
  1. Students or professionals aiming to enter the AI + DevOps job market
Формат видео: MP4
Видео: avc, 1920x1080, 16:9, 29.842 к/с, 2501 кб/с
Аудио: aac lc sbr, 48.0 кгц, 62.7 кб/с, 2 аудио
MediaInfo
General
Unique ID : 87393405989458571307187411936247749730 (0x41BF5B95BF3FC7574EE9C4C29C831C62)
Complete name : D:\2\Udemy - LLMOps And AIOps Bootcamp With 9+ End To End Projects (7.2025)\9 - AI Music Composer using GitLab CI - CD,GCP Kubernetes, Music21, Synthesizer,\111 - Introduction to the Project.mp4
Format : Matroska
Format version : Version 4
File size : 374 MiB
Duration : 20 min 22 s
Overall bit rate : 2 566 kb/s
Frame rate : 29.842 FPS
Writing application : mkvmerge v63.0.0 ('Everything') 32-bit
Writing library : libebml v1.4.2 + libmatroska v1.6.4
FileExtension_Invalid : mkv mk3d mka mks
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L4
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Codec ID : V_MPEG4/ISO/AVC
Duration : 20 min 22 s
Bit rate : 2 501 kb/s
Nominal bit rate : 6 400 kb/s
Width : 1 920 pixels
Height : 1 080 pixels
Display aspect ratio : 16:9
Frame rate mode : Variable
Frame rate : 29.842 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.040
Stream size : 364 MiB (97%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=24 / lookahead_threads=4 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=6400 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=6400 / vbv_bufsize=12800 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Default : Yes
Forced : No
Audio
ID : 2
Format : AAC LC SBR
Format/Info : Advanced Audio Codec Low Complexity with Spectral Band Replication
Commercial name : HE-AAC
Format settings : Implicit
Codec ID : A_AAC-2
Duration : 20 min 22 s
Bit rate : 62.7 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 48.0 kHz
Frame rate : 23.438 FPS (2048 SPF)
Compression mode : Lossy
Delay relative to video : -105 ms
Stream size : 9.13 MiB (2%)
Default : Yes
Forced : No
Скриншоты
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 

inforbes

Стаж: 14 лет 10 месяцев

Сообщений: 47


inforbes · 30-Окт-25 14:56 (спустя 3 месяца 9 дней)

пораздавайте пожалуйста, очень медленно качает
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error