AI & LLM Engineering Mastery: GenAI, RAG Complete Guide
Год выпуска: 2/2025
Производитель: Udemy, Paulo Dichone
Сайт производителя:
https://www.udemy.com/course/llm-engineering/
Автор: Paulo Dichone
Продолжительность: 28h 13m 6s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
What you'll learn
- Master the architecture and workflow of a RAG system for processing PDFs and multimodal data.
- Master the Fundamentals of AI, Machine Learning and Deep Learning (Basics)
- Master LangChain tools, frameworks, and workflows, including embedding techniques and retrievers.
- Fine-tuning models with OpenAI, LoRA, and other techniques to customize AI responses.
- Develop AI-driven applications with advanced RAG techniques, multimodal search, and AI agents for real-world use cases.
Requirements
- Basics of Programming - Python Fundamentals INCLUDED
Description
Become an AI Engineer and master Large Language Models (LLMs), Generative AI, Retrieval-Augmented Generation (RAG), AI agents, and vector databases in this comprehensive hands-on course.
Whether a beginner or an experienced developer, this course will take you from zero to hero in building real-world AI-powered applications.
This course combines deep theoretical insights with hands-on projects, ensuring you understand AI model architectures, development and optimization strategies, and practical applications.
What You’ll Learn:
What You’ll Learn:
- Deep Learning & Machine Learning Foundations
- Understand neural networks, activation functions, transformers, and the evolution of AI.
- Learn how modern AI models are trained, optimized, and deployed in real-world applications.
- Master Large Language Models (LLMs) & Transformer-Based AI
- Deep dive into OpenAI models, and open-source AI frameworks.
- Build and deploy custom LLM-powered applications from scratch.
- Retrieval-Augmented Generation (RAG) & AI-Powered Search
- Learn how AI retrieves knowledge using vector embeddings, FAISS, and ChromaDB.
- Implement scalable RAG systems for AI-powered document search and retrieval.
- LangChain & AI Agent Workflows
- Build AI agents that autonomously retrieve, process, and generate information.
- Fine-Tuning LLMs & Open-Source AI Models
- Fine-tune OpenAI, and LoRA models for custom applications.
- Learn how to optimize LLMs for better accuracy, efficiency, and scalability.
- Vector Databases & AI-Driven Knowledge Retrieval
- Work with FAISS, ChromaDB, and vector-based AI search workflows.
- Develop AI systems that retrieve and process structured & unstructured data.
- Hands-on with AI Deployment & Real-World Applications
- Build AI-powered chatbots, multimodal RAG applications, and AI automation tools.
Who Should Take This Course?
- Aspiring AI Engineers & Data Scientists – Looking to master LLMs, AI retrieval, and search systems.
- Developers & Software Engineers – Who want to integrate AI into their applications.
- Machine Learning Enthusiasts – Seeking a deep dive into AI, GenAI, and AI-powered search.
- Tech Entrepreneurs & Product Managers – Wanting to build AI-driven SaaS products.
- Students & AI Beginners – Who need a structured, step-by-step path from beginner to expert.
Course Requirements
- No prior AI experience required – the course takes you from beginner to expert.
- Basic Python knowledge (recommended but not required - Python Fundamentals Included in the course).
- Familiarity with APIs & JSON is helpful but not mandatory.
- A computer with internet access for hands-on development.
Why Take This Course?
- Comprehensive AI Training: Covers LLMs, RAG, AI Agents, Vector Databases, Fine-Tuning.
- Hands-On Projects: Every concept is reinforced with real-world AI applications.
- Up-to-Date & Practical: Learn cutting-edge AI techniques & tools used in top tech companies.
- Zero to Hero Approach: Designed for absolute beginners & experienced developers alike.
Master AI Engineering and become an expert in GenAI, LLMs, and RAG today.
Who this course is for:
- Developers looking to implement AI-powered document search and retrieval.
- Tech Entrepreneurs & Product Managers who want to build AI-driven applications.
- Students & Researchers exploring the practical applications of LLMs and AI-driven automation.
Формат видео: MP4
Видео: avc, 1280x720, 16:9, 30.000 к/с, 775 кб/с
Аудио: aac lc, 44.1 кгц, 128 кб/с, 2 аудио
Изменения/Changes
Version 2025/2 has increased the number of lessons by 1 and reduced the duration by 1 minute compared to 2025/1. Subtitles have also been added.
MediaInfo
General
Complete name : D:\2\Udemy - AI & LLM Engineering Mastery GenAI, RAG Complete Guide (2.2025)\05. OPTIONAL - Python Deep Dive - Master Python Fundamentals\64. The FileNotFound and IndexError Exceptions Types.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 25.7 MiB
Duration : 3 min 56 s
Overall bit rate : 911 kb/s
Frame rate : 30.000 FPS
Writing application : Lavf59.27.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Format settings, GOP : M=4, N=60
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 3 min 56 s
Bit rate : 775 kb/s
Nominal bit rate : 3 000 kb/s
Maximum bit rate : 3 000 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.028
Stream size : 21.9 MiB (85%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=3000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=3000 / vbv_bufsize=6000 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Color range : Limited
Color primaries : BT.709
Transfer characteristics : BT.709
Matrix coefficients : BT.709
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC
Format/Info : Advanced Audio Codec Low Complexity
Codec ID : mp4a-40-2
Duration : 3 min 56 s
Source duration : 3 min 56 s
Source_Duration_LastFrame : -1 ms
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 44.1 kHz
Frame rate : 43.066 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 3.62 MiB (14%)
Source stream size : 3.62 MiB (14%)
Default : Yes
Alternate group : 1