[Udemy, Henrik Johansson] Data Science Methods and Techniques [2025] [7/2024, ENG]

Страницы:  1
Ответить
 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2063

LearnJavaScript Beggom · 26-Июл-25 19:23 (3 месяца 28 дней назад)

Data Science Methods and Techniques [2025]
Год выпуска: 7/2024
Производитель: Udemy
Сайт производителя: https://www.udemy.com/course/data-science-methods-and-techniques-2024/
Автор: Henrik Johansson
Продолжительность: 17h 2m 46s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Английский
Описание:
What you'll learn
  1. Knowledge about Data Science methods, techniques, theory, best practices, and tasks
  2. Deep hands-on knowledge of Data Science and know how to handle common Data Science tasks with confidence
  3. Detailed and deep Master knowledge of Regression, Prediction, Classification, Supervised Learning, Cluster Analysis, and Unsupervised Learning
  4. Hands-on knowledge of Scikit-learn, Statsmodels, Matplotlib, Seaborn, and some other Python libraries
  5. Advanced knowledge of A.I. prediction models and automatic model creation
  6. Cloud computing: Use the Anaconda Cloud Notebook (Cloud-based Jupyter Notebook). Learn to use Cloud computing resources
Requirements
  1. Basic knowledge of the Python programming language and preferably the Pandas library
  2. The four ways of counting (+-*/)
  3. Everyday experience using a computer with either Windows, MacOS, iOS, Android, ChromeOS, or Linux is recommended
  4. Access to a computer with an internet connection
Description
Welcome to the course Data Science Methods and Techniques for Data Analysis and Machine Learning!
Data Science is expanding and developing on a massive and global scale. Everywhere in society, there is a movement to implement and use Data Science Methods and Techniques to develop and optimize all aspects of our lives, businesses, societies, governments, and states.
This course will teach you a large selection of Data Science methods and techniques, which will give you an excellent foundation for Data Science jobs and studies. This course has exclusive content that will teach you many new things regardless of if you are a beginner or an experienced Data Scientist, Data Analyst, or Machine Learning Engineer.
This is a three-in-one master class video course which will teach you to master Regression, Prediction, Classification, Supervised Learning, Cluster analysis, and Unsupervised Learning.
You will learn to master Regression, Regression analysis, Prediction and supervised learning. This course has the most complete and fundamental master-level regression content packages on Udemy, with hands-on, useful practical theory, and also automatic Machine Learning algorithms for model building, feature selection, and artificial intelligence. You will learn about models ranging from linear regression models to advanced multivariate polynomial regression models.
You will learn to master Classification and supervised learning. You will learn about the classification process, classification theory, and visualizations as well as some useful classifier models, including the very powerful Random Forest Classifiers Ensembles and Voting Classifier Ensembles.
You will learn to master Cluster Analysis and unsupervised learning. This part of the course is about unsupervised learning, cluster theory, artificial intelligence, explorative data analysis, and some useful Machine Learning clustering algorithms ranging from hierarchical cluster models to density-based cluster models.
You will learn
  1. Knowledge about Data Science methods, techniques, theory, best practices, and tasks
  2. Deep hands-on knowledge of Data Science and know how to handle common Data Science tasks with confidence
  3. Detailed and deep Master knowledge of Regression, Regression analysis, Prediction, Classification, Supervised Learning, Cluster Analysis, and Unsupervised Learning
  4. Hands-on knowledge of Scikit-learn, Statsmodels, Matplotlib, Seaborn, and some other Python libraries
  5. Advanced knowledge of A.I. prediction models and automatic model creation
  6. Cloud computing: Use the Anaconda Cloud Notebook (Cloud-based Jupyter Notebook). Learn to use Cloud computing resources
  7. Option: To use the Anaconda Distribution (for Windows, Mac, Linux)
  8. Option: Use Python environment fundamentals with the Conda package management system and command line installing/updating of libraries and packages – golden nuggets to improve your quality of work life
  9. And much more…
This course includes
  1. an easy-to-follow guide for using the Anaconda Cloud Notebook (Cloud-based Jupyter Notebook). You may learn to use Cloud Computing resources in this course
  2. an easy-to-follow optional guide for downloading, installing, and setting up the Anaconda Distribution, which makes anyone able to install a Python Data Science environment useful for this course or for any Data Science or coding task
  3. content that will teach you many new things, regardless of if you are a beginner or an experienced Data Scientist, Data Analyst, or Machine Learning Engineer
  4. a large collection of unique content, and this course will teach you many new things that only can be learned from this course on Udemy
  5. a course structure built on a proven and professional framework for learning.
  6. a compact course structure and no killing time
This course is an excellent way to learn to master Regression, Prediction, Classification, and Cluster analysis!
These are the most important and useful tools for modeling, AI, and forecasting.
Is this course for you?
  1. This course is for you, regardless if you are a beginner or an experienced Data Scientist
  2. This course is for you, regardless if you have a Ph.D. or no education or experience at all
This course is the course we ourselves would want to be able to enroll in if we could time-travel and become new students. In our opinion, this course is the best course to learn to Master Regression, Prediction, Classification, Supervised Learning, Cluster analysis, and unsupervised learning.
Course requirements
  1. Basic knowledge of the Python programming language and preferably the Pandas library
  2. The four ways of counting (+-*/)
  3. Everyday experience using a computer with either Windows, MacOS, iOS, Android, ChromeOS, or Linux is recommended
  4. Access to a computer with an internet connection
  5. The course only uses costless software
  6. Walk-you-through installation and setup videos for Cloud computing and Windows 10/11 is included
Enroll now to receive 15+ hours of video tutorials with manually edited English captions, and a certificate of completion after completing the course!
Who this course is for:
  1. This course is for you, regardless if you are a beginner or an experienced Data Scientist
  2. This course is for you, regardless if you have a Ph.D. or no education or experience at all
Формат видео: MP4
Видео: avc, 1280x720, 16:9, 30.000 к/с, 788 кб/с
Аудио: aac lc, 48.0 кгц, 128 кб/с, 2 аудио
MediaInfo
General
Complete name : D:\2\Udemy - Data Science Methods and Techniques [2025] (7.2024)\3. Classification and Supervised Learning\5. The Random Forest Classifier.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 332 MiB
Duration : 50 min 5 s
Overall bit rate : 925 kb/s
Frame rate : 30.000 FPS
Writing application : Lavf59.27.100
Conformance errors : 2
read : Yes
General compliance : Element size 2065855584 is more than maximal permitted size 10232 (offset 0x14B837E7)
MPEG-4 : Yes
General compliance : File size 347627487 is less than expected size 2413472839 (offset 0x14B837E7)
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Format settings, GOP : M=4, N=60
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 50 min 5 s
Bit rate : 788 kb/s
Nominal bit rate : 3 000 kb/s
Maximum bit rate : 3 000 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.029
Stream size : 282 MiB (85%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=3000 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=3000 / vbv_bufsize=6000 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC
Format/Info : Advanced Audio Codec Low Complexity
Codec ID : mp4a-40-2
Duration : 50 min 5 s
Source duration : 50 min 5 s
Bit rate mode : Constant
Bit rate : 128 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 48.0 kHz
Frame rate : 46.875 FPS (1024 SPF)
Compression mode : Lossy
Stream size : 45.9 MiB (14%)
Source stream size : 45.9 MiB (14%)
Default : Yes
Alternate group : 1
Скриншоты
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 

tjurkgoogle

Стаж: 9 лет 11 месяцев

Сообщений: 23


tjurkgoogle · 26-Июл-25 22:05 (спустя 2 часа 41 мин.)

Что мы делали бы без Вас! Сидели бы без классных курсов!
[Профиль]  [ЛС] 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2063

LearnJavaScript Beggom · 26-Июл-25 23:05 (спустя 59 мин.)

tjurkgoogle писал(а):
88031717Что мы делали бы без Вас! Сидели бы без классных курсов!
Спасибо за добрые слова
[Профиль]  [ЛС] 

Aodaliya_Ren

Стаж: 14 лет 1 месяц

Сообщений: 696


Aodaliya_Ren · 06-Сен-25 22:59 (спустя 1 месяц 10 дней, ред. 06-Сен-25 22:59)

LearnJavaScript Beggom писал(а):
88031906
tjurkgoogle писал(а):
88031717Что мы делали бы без Вас! Сидели бы без классных курсов!
Спасибо за добрые слова
Как говорят у нас в Австралии, "I owe you a six-pack" (тут пиво продают в упаковках по 6 бутылочек 375ml)
[Профиль]  [ЛС] 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2063

LearnJavaScript Beggom · 07-Сен-25 19:42 (спустя 20 часов, ред. 07-Сен-25 19:42)

Aodaliya_Ren писал(а):
88179987
LearnJavaScript Beggom писал(а):
88031906
tjurkgoogle писал(а):
88031717Что мы делали бы без Вас! Сидели бы без классных курсов!
Спасибо за добрые слова
Как говорят у нас в Австралии, "I owe you a six-pack" (тут пиво продают в упаковках по 6 бутылочек 375ml)
Пожалуйста!
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error