[Udemy, J Garg] MLflow in Action - Master the art of MLOps using MLflow tool [8/2024, ENG]

Страницы:  1
Ответить
 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2060

LearnJavaScript Beggom · 31-Авг-25 23:29 (2 месяца 29 дней назад, ред. 01-Сен-25 15:01)

MLflow in Action - Master the art of MLOps using MLflow tool
Год выпуска: 8/2024
Производитель: Udemy
Сайт производителя: https://www.udemy.com/course/mlflow-course/
Автор: J Garg - Real Time Learning
Продолжительность: 9h 15m 57s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Испанские (встроенные в видео)
Описание:
A master guide to unleash the full potential of MLflow to optimize MLOps. Streamline MLOps workflows using MLflow tool
What you'll learn
  1. Explore the fundamentals of MLOps and how it overcomes the challenges inherent in the traditional ML lifecycle.
  2. Gain a deep understanding of MLflow and the role of its 4 components in managing the end-to-end Machine learning operations (MLOps).
  3. Learn how to efficiently Track experiments, Package code, Register and reproduce models in the realm of MLOps using MLflow tool.
  4. A range of MLflow logging functions to effectively track and record experiments, runs, artifacts, parameters, code, metrics etc.
  5. MLflow Tracking - To log, organize, and compare Machine learning experiments effortlessly.
  6. MLflow Model - For efficient model packaging into distinct flavors allowing to streamline model deployment and integration into production systems.
  7. MLflow Project - To create structured, reproducible, and easily shareable Machine Learning workflows.
  8. MLflow Registry - For efficient model management, version tracking in order to maintain model quality and performance over time.
Requirements
  1. Basic Machine Leaning knowledge
  2. Basic Python knowledge
Description
Why MLOps ?
MLOps is the backbone of modern Machine learning workflows. It solves the pressing problem of operationalizing the ML models in production systems. Pushing the ML models to production which could traditionally take months can now be operationalized in few days using MLOps tools.
As per the tech talks in market, 2024 is the year of MLOps and would become the mandate skill for Enterprise ML projects.
Why MLflow tool for MLOps ?
MLflow is the ultimate tool for MLOps because it streamlines the entire Machine learning lifecycle. It allows you to efficiently track experiments, package code, register versions and deploy models, all within one unified platform. Unlike other tools, MLflow simplifies the process, enabling you to transition from development to deployment seamlessly.
MLflow's popularity is evident from the thousands of organizations, ranging from startups to Fortune 500 companies, that have integrated MLflow into their MLOps workflows.
_____________________________________________________________________________________________________
What's included in this MLflow course ?
  1. Understand MLOps basics, limitations of traditional ML lifecycles, how MLOps overcomes those limitations.
  2. Complete MLflow concepts explained from Scratch to Real-Time implementation.
  3. Learn in practical the 4 core components of MLflow - Tracking, Model, Project, and Registry.
  4. Various logging functions in MLflow for precise tracking and recording of experiments, runs, artifacts, parameters, code, metrics, and more.
  5. Learn to handle customized models using Python in MLflow.
  6. Learn to interact with MLflow using MLflow library, UI, MLflow Client and CLI commands.
  7. Learn Best practices and Optimization techniques to follow in Real-Time MLOps/MLflow Projects.
______________________________________________________________________________________________________
**Exclusive**- A complete end-to-end ML project demonstrating MLflow's integration with AWS cloud. Build, Train, Test, Deploy a Machine learning model in AWS cloud using AWS Sagemaker, Codecommit, Ec2, ECR, AWS S3, IAM etc services while leveraging MLflow tracking capabilities.
After completing this course, you can start working on any MLOps/MLflow project with full confidence.
Add-Ons
- Questions and Queries will be answered very quickly.
- Codes and references used in lectures are attached in the course for your convenience.
Who this course is for:
  1. Data Scientists
  2. Machine Learning Engineers
  3. MLOps Engineers
  4. Operations Engineers
Формат видео: MP4
Видео: avc, 1280x720, 16:9, 30.000 к/с, 177 кб/с
Аудио: aac lc sbr, 44.1 кгц, 62.8 кб/с, 2 аудио
MediaInfo
General
Unique ID : 56081078218011906658983563803977422453 (0x2A30D2A20FB158BF03C60338AA499675)
Complete name : D:\2_1\Udemy - MLflow in Action - Master the art of MLOps using MLflow tool (8.2024)\4 - MLflow Logging functions\17 - Start and End run functions Part 1.mp4
Format : Matroska
Format version : Version 4
File size : 8.93 MiB
Duration : 5 min 9 s
Overall bit rate : 242 kb/s
Frame rate : 30.000 FPS
Encoded date : 2024-08-21 16:01:01 UTC
Writing application : mkvmerge v57.0.0 ('Till The End') 64-bit
Writing library : libebml v1.4.2 + libmatroska v1.6.4
FileExtension_Invalid : mkv mk3d mka mks
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L3.1
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Format settings, GOP : M=4, N=60
Codec ID : V_MPEG4/ISO/AVC
Duration : 5 min 9 s
Bit rate : 177 kb/s
Nominal bit rate : 400 kb/s
Width : 1 280 pixels
Height : 720 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.006
Stream size : 6.52 MiB (73%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=22 / lookahead_threads=3 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=400 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=400 / vbv_bufsize=800 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Default : Yes
Forced : No
Color range : Limited
Color primaries : BT.601 NTSC
Transfer characteristics : BT.601
Matrix coefficients : BT.601
Audio
ID : 2
Format : AAC LC SBR
Format/Info : Advanced Audio Codec Low Complexity with Spectral Band Replication
Commercial name : HE-AAC
Format settings : Explicit
Codec ID : A_AAC-2
Duration : 5 min 9 s
Bit rate : 62.8 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 44.1 kHz
Frame rate : 21.533 FPS (2048 SPF)
Compression mode : Lossy
Stream size : 2.31 MiB (26%)
Language : English
Default : Yes
Forced : No
Text #1
ID : 3
Format : UTF-8
Codec ID : S_TEXT/UTF8
Codec ID/Info : UTF-8 Plain Text
Duration : 5 min 6 s
Bit rate : 156 b/s
Frame rate : 0.238 FPS
Count of elements : 73
Stream size : 5.84 KiB (0%)
Language : Spanish
Default : Yes
Forced : No
Text #2
ID : 4
Format : UTF-8
Codec ID : S_TEXT/UTF8
Codec ID/Info : UTF-8 Plain Text
Duration : 5 min 6 s
Bit rate : 132 b/s
Frame rate : 0.248 FPS
Count of elements : 76
Stream size : 4.95 KiB (0%)
Language : English
Default : No
Forced : No
Скриншоты
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 

vswamy2015

Стаж: 10 лет 5 месяцев

Сообщений: 113


vswamy2015 · 01-Сен-25 20:36 (спустя 21 час)

Thank you very much for uploading this course.
Please upload https://www.udemy.com/course/devops-to-mlops-bootcamp/ if possible.
Ultimate DevOps to MLOps Bootcamp - Build ML CI/CD Pipelines
Supercourse: Docker,Kubernetes, Argo Container Platform 2025
[Профиль]  [ЛС] 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2060

LearnJavaScript Beggom · 04-Сен-25 16:16 (спустя 2 дня 19 часов, ред. 04-Сен-25 16:16)

vswamy2015 писал(а):
88161380Thank you very much for uploading this course.
Please upload https://www.udemy.com/course/devops-to-mlops-bootcamp/ if possible.
Ultimate DevOps to MLOps Bootcamp - Build ML CI/CD Pipelines
Supercourse: Docker,Kubernetes, Argo Container Platform 2025
I found the first one. I’ll upload it tomorrow or the day after.
I've uploaded it here: [Udemy, Gourav J. Shah, School of Devops] Ultimate DevOps to MLOps Bootcamp - Build ML CI/CD Pipelines [8/2025, ENG]
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error