[Udemy, Henrik Johansson] Master Regression & Prediction with Pandas and Python [2025] [5/2024, ENG]

Страницы:  1
Ответить
 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2062

LearnJavaScript Beggom · 26-Июл-25 21:57 (4 месяца назад)

Master Regression & Prediction with Pandas and Python [2025]
Год выпуска: 5/2024
Производитель: Udemy
Сайт производителя: https://www.udemy.com/course/master-regression-prediction-with-pandas-and-python-2024/
Автор: Henrik Johansson
Продолжительность: 32h 6m 38s
Тип раздаваемого материала: Видеоурок
Язык: Английский
Субтитры: Отсутсвуют
Описание:
What you'll learn
Master Regression, Regression analysis, and Prediction both in theory and practice
Master Regression models from simple Regression models to Polynomial Multiple Regression models and advanced Multivariate Polynomial Multiple Regression models
Use Machine Learning Automatic Model Creation and Feature Selection
Use Regularization of Regression models with Lasso Regression and Ridge Regression
Use Decision Tree, Random Forest, XGBoost, and Voting Regression models
Use Feedforward Multilayer Networks and Advanced Regression model Structures
Use effective advanced Residual analysis and tools to judge models goodness-of-fit plus residual distributions
Use the Statsmodels and Scikit-learn libraries for Regression supported by Matplotlib, Seaborn, Pandas, and Python
Master Python 3 programming with Python’s native data structures, data transformers, functions, object orientation, and logic
Use and design advanced Python constructions and execute detailed Data Handling tasks with Python incl. File Handling
Use Python’s advanced object-oriented programming and make your own custom objects, functions and how to generalize functions
Manipulate data and use advanced multi-dimensional uneven data structures
Master the Pandas 2 and 3 library for Advanced Data Handling
Use the language and fundamental concepts of the Pandas library and to handle all aspects of creating, changing, modifying, and selecting Data from a Pandas D
Use file handling with Pandas and how to combine Pandas DataFrames with Pandas concat, join, and merge functions/methods
Perform advanced data preparation including advanced model-based imputation of missing data and the scaling and standardizing of data
Make advanced data descriptions and statistics with Pandas. Rank, sort, cross-tabulate, pivot, melt, transpose, and group data
[Bonus] Make advanced Data Visualizations with Pandas, Matplotlib, and Seaborn
Cloud computing: Use the Anaconda Cloud Notebook (Cloud-based Jupyter Notebook). Learn to use Cloud computing resources
Option: To use the Anaconda Distribution (for Windows, Mac, Linux)
Option: Use Python environment fundamentals with the Conda package management system and command line installing/updating of libraries and packages
Requirements
  1. Everyday experience using a computer with either Windows, MacOS, iOS, Android, ChromeOS, or Linux is recommended
  2. Access to a computer with an internet connection
  3. Programming experience is not needed and you will be taught everything you need
  4. The course only uses costless software
  5. Walk-you-through installation and setup videos for Cloud computing and Windows 10/11 is included
Description
Welcome to the course Master Regression & Prediction with Pandas and Python!
This three-in-one master class video course will teach you to master Regression, Prediction, Python 3, Pandas 2 + 3, and advanced Data Handling.
You will learn to master Regression, Regression analysis, and Prediction with a large number of advanced Regression techniques for purposes of Prediction and Automatic Model Creation, or so-called true machine intelligence or AI. You will learn to handle advanced model structures and eXtreme Gradient Boosting Regression for prediction tasks.
Python 3 is one of the most popular and useful programming languages in the world, and Pandas 2 and future version 3 is the most powerful, efficient, and useful Data Handling library in existence.
You will learn to master Python's native building blocks and powerful object-oriented programming. You will design your own advanced constructions of Python’s building blocks and execute detailed Data Handling tasks with Python.
You will learn to master the Pandas library and to use its powerful Data Handling techniques for advanced Data Science and Machine Learning Data Handling tasks. The Pandas library is a fast, powerful, flexible, and easy-to-use open-source data analysis and data manipulation tool, which is directly usable with the Python programming language.
You will learn to:
  1. Master Regression, Regression analysis and Prediction both in theory and practice
  2. Master Regression models from simple linear Regression models to Polynomial Multiple Regression models and advanced Multivariate Polynomial Multiple Regression models plus XGBoost Regression.
  3. Use Machine Learning Automatic Model Creation and Feature Selection
  4. Use Regularization of Regression models with Lasso Regression and Ridge Regression
  5. Use Decision Tree, Random Forest, XGBoost, and Voting Regression models
  6. Use Feedforward Multilayer Networks and Advanced Regression model Structures
  7. Use effective advanced Residual analysis and tools to judge models goodness-of-fit plus residual distributions.
  8. Use the Statsmodels and Scikit-learn libraries for Regression supported by Matplotlib, Seaborn, Pandas, and Python
  9. Master Python 3 programming with Python’s native data structures, data transformers, functions, object orientation, and logic
  10. Use and design advanced Python constructions and execute detailed Data Handling tasks with Python incl. File Handling
  11. Use Python’s advanced object-oriented programming and make your own custom objects, functions and how to generalize functions
  12. Manipulate data and use advanced multi-dimensional uneven data structures
  13. Master the Pandas 2 and 3 library for Advanced Data Handling
  14. Use the language and fundamental concepts of the Pandas library and to handle all aspects of creating, changing, modifying, and selecting Data from a Pandas DataFrame object
  15. Use file handling with Pandas and how to combine Pandas DataFrames with Pandas concat, join, and merge functions/methods
  16. Perform advanced data preparation including advanced model-based imputation of missing data and the scaling and standardizing of data
  17. Make advanced data descriptions and statistics with Pandas. Rank, sort, cross-tabulate, pivot, melt, transpose, and group data
  18. [Bonus] Make advanced Data Visualizations with Pandas, Matplotlib, and Seaborn
  19. Cloud computing: Use the Anaconda Cloud Notebook (Cloud-based Jupyter Notebook). Learn to use Cloud computing resources.
  20. Option: To use the Anaconda Distribution (for Windows, Mac, Linux)
  21. Option: Use Python environment fundamentals with the Conda package management system and command line installing/updating of libraries and packages – golden nuggets to improve your quality of work life.
  22. And much more…
This course is an excellent way to learn to master Regression, Prediction, Python, Pandas and Data Handling!
Regression and Prediction are the most important and used tools for modeling, AI, and forecasting. Data Handling is the process of making data useful and usable for regression, prediction, and data analysis.
Most Data Scientists and Machine Learning Engineers spends about 80% of their working efforts and time on Data Handling tasks. Being good at Python, Pandas, and Data Handling are extremely useful and time-saving skills that functions as a force multiplier for productivity.
This course is designed for everyone who wants to
  1. learn to master Regression and Prediction
  2. learn to Master Python 3 from scratch or the beginner level
  3. learn to Master Python 3 and knows another programming language
  4. reach the Master - intermediate Python programmer level as required by many advanced Udemy courses in Python, Data Science, or Machine Learning
  5. learn to Master the Pandas library
  6. learn Data Handling skills that work as a force multiplier and that they will have use of in their entire career
  7. learn advanced Data Handling and improve their capabilities and productivity
Requirements:
  1. Everyday experience using a computer with either Windows, MacOS, iOS, Android, ChromeOS, or Linux is recommended
  2. Access to a computer with an internet connection
  3. Programming experience is not needed and you will be taught everything you need
  4. The course only uses costless software
  5. Walk-you-through installation and setup videos for Cloud computing and Windows 10/11 is included
This course is the course we ourselves would want to be able to enroll in if we could time-travel and become new students. In our opinion, this course is the best course to learn to Master Regression, Prediction, Python, Pandas, and Data Handling.
Enroll now to receive 30+ hours of video tutorials with manually edited English captions, and a certificate of completion after completing the course!
Who this course is for:
  1. anyone who wants to learn to master Regression and Prediction
  2. anyone who wants to learn to Master Python 3 from scratch or the beginner level
  3. anyone who wants to learn to Master Python 3 and knows another programming language
  4. anyone who wants to reach the Master/intermediate Python programmer level as required by many advanced Udemy courses in Python, Data Science, or Machine Learning
  5. anyone who wants to learn to Master the Pandas library
  6. anyone who wants to learn Data Handling skills that work as a force multiplier and that they will have use of in their entire career
  7. anyone who wants to learn advanced Data Handling and improve their capabilities and productivity
Формат видео: MP4
Видео: avc, 1920x1080, 16:9, 30.000 к/с, 462 кб/с
Аудио: aac lc sbr, 48.0 кгц, 62.7 кб/с, 2 аудио
MediaInfo
General
Complete name : D:\2\Udemy - Master Regression & Prediction with Pandas and Python [2025] (5.2024)\3 - Master Pandas for Data Handling\28 - Creating a Pandas DataFrame from scratch.mp4
Format : MPEG-4
Format profile : Base Media
Codec ID : isom (isom/iso2/avc1/mp41)
File size : 122 MiB
Duration : 30 min 47 s
Overall bit rate mode : Variable
Overall bit rate : 556 kb/s
Frame rate : 30.000 FPS
Recorded date : 2024-05-02 03:59:01.2276841-06:00
Writing application : Lavf59.27.100
Video
ID : 1
Format : AVC
Format/Info : Advanced Video Codec
Format profile : Main@L4
Format settings : CABAC / 4 Ref Frames
Format settings, CABAC : Yes
Format settings, Reference frames : 4 frames
Format settings, GOP : M=4, N=60
Codec ID : avc1
Codec ID/Info : Advanced Video Coding
Duration : 30 min 47 s
Source duration : 30 min 47 s
Bit rate : 462 kb/s
Nominal bit rate : 1 200 kb/s
Maximum bit rate : 487 kb/s
Width : 1 920 pixels
Height : 1 080 pixels
Display aspect ratio : 16:9
Frame rate mode : Constant
Frame rate : 30.000 FPS
Color space : YUV
Chroma subsampling : 4:2:0
Bit depth : 8 bits
Scan type : Progressive
Bits/(Pixel*Frame) : 0.007
Stream size : 102 MiB (83%)
Source stream size : 107 MiB (88%)
Writing library : x264 core 164 r3095 baee400
Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x1:0x111 / me=umh / subme=6 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=0 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=24 / lookahead_threads=4 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=6 / scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=cbr / mbtree=1 / bitrate=1200 / ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / vbv_maxrate=1200 / vbv_bufsize=2400 / nal_hrd=none / filler=0 / ip_ratio=1.40 / aq=1:1.00
Codec configuration box : avcC
Audio
ID : 2
Format : AAC LC SBR
Format/Info : Advanced Audio Codec Low Complexity with Spectral Band Replication
Commercial name : HE-AAC
Format settings : Implicit
Codec ID : mp4a-40-2
Duration : 30 min 47 s
Bit rate mode : Variable
Bit rate : 62.7 kb/s
Maximum bit rate : 64.0 kb/s
Channel(s) : 2 channels
Channel layout : L R
Sampling rate : 48.0 kHz
Frame rate : 23.438 FPS (2048 SPF)
Compression mode : Lossy
Stream size : 13.8 MiB (11%)
Default : Yes
Alternate group : 1
Скриншоты
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 

none68

Стаж: 15 лет 9 месяцев

Сообщений: 66

none68 · 26-Июл-25 22:03 (спустя 5 мин.)

завтра добегу до основного компьютера встану на раздачу, помогу чуток))))
[Профиль]  [ЛС] 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2062

LearnJavaScript Beggom · 26-Июл-25 23:10 (спустя 1 час 6 мин.)

none68 писал(а):
88031711завтра добегу до основного компьютера встану на раздачу, помогу чуток))))
Спасибо
[Профиль]  [ЛС] 

s_e_r12

Стаж: 15 лет 9 месяцев

Сообщений: 85


s_e_r12 · 02-Авг-25 18:08 (спустя 6 дней)

Ребят кто знает шервуд все каюк?
[Профиль]  [ЛС] 

LearnJavaScript Beggom

Стаж: 5 лет 8 месяцев

Сообщений: 2062

LearnJavaScript Beggom · 03-Авг-25 21:06 (спустя 1 день 2 часа, ред. 03-Авг-25 21:06)

s_e_r12 писал(а):
88054597Ребят кто знает шервуд все каюк?
Они вроде домен на .tech поменяли. Но я не уверен, что это они + там у них какая-то путаница: сайт ещё не полностью восстановили, и не все премиум-аккаунты работают.
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error