Howard D. Curtis / Говард Кёртис - Orbital Mechanics for Engineering Students / Орбитальная механика для студентов-инженеров (Elsevier Aerospace Engineering) [2005, PDF, ENG]

Страницы:  1
Ответить
 

porkemon

Старожил

Стаж: 17 лет 3 месяца

Сообщений: 257

porkemon · 25-Янв-21 20:14 (4 года 5 месяцев назад, ред. 26-Мар-21 18:34)

Orbital Mechanics for Engineering Students / Орбитальная механика для студентов-инженеров
Год издания: 2005
Автор: Howard D. Curtis / Говард Кёртис
Издательство: Elsevier Butterworth-Heinemann
ISBN: 978-0-08-047054-2
Серия: Elsevier Aerospace Engineering
Язык: Английский
Формат: PDF
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 692
Описание: Orbital mechanics is a cornerstone subject for aerospace engineering students. However, with its basis in classical physics and mechanics, it can be a difficult and weighty subject. Howard Curtis - Professor of Aerospace Engineering at Embry-Riddle University, the US's #1 rated undergraduate aerospace school - focuses on what students at undergraduate and taught masters level really need to know in this hugely valuable text. Fully supported by the analytical features and computer based tools required by today's students, it brings a fresh, modern, accessible approach to teaching and learning orbital mechanics. A truly essential new resource.
Key Features
A complete, stand-alone text for this core aerospace engineering subject Richly-detailed, up-to-date curriculum coverage; clearly and logically developed to meet the needs of students. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work; with fully worked examples throughout, Q&A material, and extensive homework exercises.
Readership
Undergraduate students in aerospace, astronautical, mechanical engineering and engineering physics. Widely applicable to taught Masters level courses in similar subjects. Ideal for courses in orbital mechanics, including astronomy, cosmology, general mechanical engineering courses with options in space or satellite engineering, and various mathematics disciplines. Related professional aerospace and space engineering fields. Space, rocket and satellite systems engineering form key divisions of most major aeronautical groups, including organisations such as NASA, the European Space Agency, and commercial organisations such as Boeing, BAe Space Systems, etc.
Примеры страниц
Оглавление
Contents
Preface xi
Supplements to the text xv
Chapter
1 Dynamics of point masses 1
1.1 Introduction 1
1.2 Kinematics 2
1.3 Mass, force and Newton’s law of gravitation 7
1.4 Newton’s law of motion 10
1.5 Time derivatives of moving vectors 15
1.6 Relative motion 20
Problems 29
Chapter 2 The two-body problem 33
2.1 Introduction 33
2.2 Equations of motion in an inertial frame 34
2.3 Equations of relative motion 37
2.4 Angular momentum and the orbit formulas 42
2.5 The energy law 50
2.6 Circular orbits (e = 0) 51
2.7 Elliptical orbits (0 < e < 1) 55
2.8 Parabolic trajectories (e = 1) 65
2.9 Hyperbolic trajectories (e > 1) 69
2.10 Perifocal frame 76
2.11 The Lagrange coefficients 78
2.12 Restricted three-body problem 89
2.12.1 Lagrange points 92
2.12.2 Jacobi constant 96
Problems 101
Chapter 3 Orbital position as a function of time 107
3.1 Introduction 107
3.2 Time since periapsis 108
3.3 Circular orbits 108
3.4 Elliptical orbits 109
3.5 Parabolic trajectories 124
3.6 Hyperbolic trajectories 125
3.7 Universal variables 134
Problems 145
Chapter 4 Orbits in three dimensions 149
4.1 Introduction 149
4.2 Geocentric right ascension–declination frame 150
4.3 State vector and the geocentric equatorial frame 154
4.4 Orbital elements and the state vector 158
4.5 Coordinate transformation 164
4.6 Transformation between geocentric equatorial and perifocal frames 172
4.7 Effects of the earth’s oblateness 177
Problems 187
Chapter 5 Preliminary orbit determination 193
5.1 Introduction 193
5.2 Gibbs’ method of orbit determination from three position vectors 194
5.3 Lambert’s problem 202
5.4 Sidereal time 213
5.5 Topocentric coordinate system 218
5.6 Topocentric equatorial coordinate system 221
5.7 Topocentric horizon coordinate system 223
5.8 Orbit determination from angle and range measurements 228
5.9 Angles-only preliminary orbit determination 235
5.10 Gauss’s method of preliminary orbit determination 236
Problems 250
Chapter 6 Orbital maneuvers 255
6.1 Introduction 255
6.2 Impulsive maneuvers 256
6.3 Hohmann transfer 257
6.4 Bi-elliptic Hohmann transfer 264
6.5 Phasing maneuvers 268
6.6 Non-Hohmann transfers with a common apse line 273
6.7 Apse line rotation 279
6.8 Chase maneuvers 285
6.9 Plane change maneuvers 290
Problems 304
Chapter 7 Relative motion and rendezvous 315
7.1 Introduction 315
7.2 Relative motion in orbit 316
7.3 Linearization of the equations of relative motion in orbit 322
7.4 Clohessy–Wiltshire equations 324
7.5 Two-impulse rendezvous maneuvers 330
7.6 Relative motion in close-proximity circular orbits 338
Problems 340
Chapter 8 Interplanetary trajectories 347
8.1 Introduction 347
8.2 Interplanetary Hohmann transfers 348
8.3 Rendezvous opportunities 349
8.4 Sphere of influence 354
8.5 Method of patched conics 359
8.6 Planetary departure 360
8.7 Sensitivity analysis 366
8.8 Planetary rendezvous 368
8.9 Planetary flyby 375
8.10 Planetary ephemeris 387
8.11 Non-Hohmann interplanetary trajectories 391
Problems 398
Chapter 9 Rigid-body dynamics 399
9.1 Introduction 399
9.2 Kinematics 400
9.3 Equations of translational motion 408
9.4 Equations of rotational motion 410
9.5 Moments of inertia 414
9.5.1 Parallel axis theorem 428
9.6 Euler’s equations 435
9.7 Kinetic energy 441
9.8 The spinning top 443
9.9 Euler angles 448
9.10 Yaw, pitch and roll angles 459
Problems 463
Chapter 10 Satellite attitude dynamics 475
10.1 Introduction 475
10.2 Torque-free motion 476
10.3 Stability of torque-free motion 486
10.4 Dual-spin spacecraft 491
10.5 Nutation damper 495
10.6 Coning maneuver 503
10.7 Attitude control thrusters 506
10.8 Yo-yo despin mechanism 509
10.9 Gyroscopic attitude control 516
10.10 Gravity-gradient stabilization 530
Problems 543
Chapter 11 Rocket vehicle dynamics 551
11.1 Introduction 551
11.2 Equations of motion 552
11.3 The thrust equation 555
11.4 Rocket performance 557
11.5 Restricted staging in field-free space 560
11.6 Optimal staging 570
11.6.1 Lagrange multiplier 570
Problems 578
References and further reading 581
Appendix A Physical data 583
Appendix B A road map 585
Appendix C Numerical integration of the n-body equations of motion 587
C.1 Function file accel_3body.m 590
C.2 Script file threebody.m 592
Appendix D MATLAB algorithms 595
D.1 Introduction 596
D.2 Algorithm 3.1: solution of Kepler’s equation by Newton’s method 596
D.3 Algorithm 3.2: solution of Kepler’s equation for the hyperbola using Newton’s method 598
D.4 Calculation of the Stumpff functions S(z) and C(z) 600
D.5 Algorithm 3.3: solution of the universal Kepler’s equation using Newton’s method 601
D.6 Calculation of the Lagrange coefficients f and g and their time derivatives 603
D.7 Algorithm 3.4: calculation of the state vector (r, v) given the initial state vector (r0, v0) and the time lapse t 604
D.8 Algorithm 4.1: calculation of the orbital elements from the state vector 606
D.9 Algorithm 4.2: calculation of the state vector from the orbital elements 610
D.10 Algorithm 5.1: Gibbs’ method of preliminary orbit determination 613
D.11 Algorithm 5.2: solution of Lambert’s problem 616
D.12 Calculation of Julian day number at 0 hr UT 621
D.13 Algorithm 5.3: calculation of local sidereal time 623
D.14 Algorithm 5.4: calculation of the state vector from measurements of range, angular position and their rates 626
D.15 Algorithms 5.5 and 5.6: Gauss’s method of preliminary orbit determination with iterative improvement 631
D.16 Converting the numerical designation of a month or a planet into its name 640
D.17 Algorithm 8.1: calculation of the state vector of a planet at a given epoch 641
D.18 Algorithm 8.2: calculation of the spacecraft trajectory from planet 1 to planet 2 648
Appendix E Gravitational potential energy of a sphere 657
Index 661
Описание на русском
Этот учебник развился из формального набора заметок, разработанных в течение почти десяти лет преподавания вводного курса орбитальной механики для студентов аэрокосмического направления. Эти студенты не имели никакого формального опыта в этом предмете, но закончили курсы физики, динамики и математики с использованием дифференциальных уравнений и прикладной линейной алгебры. Такова предыстория, которой я оправдываюсь перед читателеями этой книги.
Это ни в коем случае не грандиозный описательный обзор всего предмета астронавтики. Это фундаментальный текст, трамплин для углубленного изучения предмета. Я сосредотачиваюсь на физических явлениях и аналитических процедурах, необходимых для понимания и прогнозирования, в первую очередь, поведения орбитальных космических аппаратов. Я старался сделать книгу читабельной для студентов, и при этом не уклоняюсь от строгости там, где она необходима для понимания. Эволюции космических аппаратов, происходящие на околоземной орбите, рассматриваются как межпланетные полеты. Материал этой книги и курс теории управления дают основу для изучения управления ориентацией космических аппаратов.
Elsevier Aerospace Engineering - Curtis H.D. / Куртис Х.Д. - Orbital Mechanics for Engineering Students / Орбитальная механика для студентов-инженеров (4th ed. / 4-е изд.) [2020, PDF, ENG]
Download
Rutracker.org не распространяет и не хранит электронные версии произведений, а лишь предоставляет доступ к создаваемому пользователями каталогу ссылок на торрент-файлы, которые содержат только списки хеш-сумм
Как скачивать? (для скачивания .torrent файлов необходима регистрация)
[Профиль]  [ЛС] 
 
Ответить
Loading...
Error