Foundations of Deep Reinforcement Learning: Theory and Practice in Python / Глубокое обучение с подкреплением: теория и практика на языке Python
Год издания: 2022
Автор: Laura Graesser and Wah Loon Keng / Лаура Грессер, Ван Лун Кенг
Переводчик: К. Синица
Издательство: Питер
ISBN: 978-5-4461-1699-7
Серия: Библиотека программиста
Язык: Русский
Формат: PDF
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Количество страниц: 416
Описание:
Глубокое обучение с подкреплением (глубокое RL) сочетает в себе два подхода к машинному обучению. В ходе такого обучения виртуальные агенты учатся решать последовательные задачи о принятии решений. За последнее десятилетие было много неординарных достижений в этой области — от однопользовательских и многопользовательских игр, таких как го и видеоигры Atari и Dota 2, до робототехники.
Эта книга — введение в глубокое обучение с подкреплением, уникально комбинирующее теорию и практику. Авторы начинают повествование с базовых сведений, затем подробно объясняют теорию алгоритмов глубокого RL, демонстрируют их реализации на примере программной библиотеки SLM Lab и напоследок описывают практические аспекты использования глубокого RL.
Руководство идеально подойдет как для студентов, изучающих компьютерные науки, так и для разработчиков программного обеспечения, которые знакомы с основными принципами машинного обучения и знают Python.
Мои остальные раздачи - https://rutr.life/forum/tracker.php?rid=43141996